Physics

LIGO Just Got a Big Upgrade, Will Begin Searching for Gravitational Waves Again on April 1st

LIGO Just Got a Big Upgrade, Will Begin Searching for Gravitational Waves Again on April 1st

In February of 2016, scientists at the Laser Interferometer Gravitational-wave Observatory (LIGO) made history by announcing the first-ever detection of gravitational waves (GWs). These ripples in the very fabric of the Universe, which are caused by black hole mergers or white dwarfs colliding, were first predicted by Einstein’s Theory of General Relativity roughly a century ago.

CERN: Study sheds light on one of physics’ biggest mysteries – why there’s more matter than antimatter

CERN: Study sheds light on one of physics’ biggest mysteries – why there’s more matter than antimatter

Why do we exist? This is arguably the most profound question there is and one that may seem completely outside the scope of particle physics. But our new experiment at CERN’s Large Hadron Collider has taken us a step closer to figuring it out.

Using Black Holes to Conquer Space: The Halo Drive!

Using Black Holes to Conquer Space: The Halo Drive!

The idea of one day traveling to another star system and seeing what is there has been the fevered dream of people long before the first rockets and astronauts were sent to space. But despite all the progress we have made since the beginning of the Space Age, interstellar travel remains just that – a fevered dream. While theoretical concepts have been proposed, the issues of cost, travel time and fuel remain highly problematic.

Researchers reverse the flow of time on IBM’s quantum computer

Researchers reverse the flow of time on IBM’s quantum computer

Quantum simulation gives a sneak peek into the possibilities of time reversal. An international team of scientists led by Argonne explored the concept of reversing time in a first-of-its-kind experiment, managing to return a computer briefly to the past. The results present new possibilities for quantum computer program testing and error correction.

The idea of creating a new universe in the lab is no joke

The idea of creating a new universe in the lab is no joke

Physicists aren’t often reprimanded for using risqué humour in their academic writings, but in 1991 that is exactly what happened to the cosmologist Andrei Linde at Stanford University. He had submitted a draft article entitled ‘Hard Art of the Universe Creation’ to the journal Nuclear Physics B. In it, he outlined the possibility of creating a universe in a laboratory: a whole new cosmos that might one day evolve its own stars, planets and intelligent life.

CERN is Planning to Build a Much, Much Larger Particle Collider. – here’s what it could discover

CERN is Planning to Build a Much, Much Larger Particle Collider. – here’s what it could discover

The Large Hadron Collider (LHC) at CERN is the most powerful particle accelerator in the world. During its ten years of operations it has led to remarkable discoveries, including the long sought-after Higgs boson. On January 15, an international team of physicists unveiled the concept design for a new particle accelerator that would dwarf the LHC.

Time travel is possible – but only if you have an object with infinite mass

 Time travel is possible – but only if you have an object with infinite mass

The concept of time travel has always captured the imagination of physicists and laypersons alike. But is it really possible? Of course it is. We’re doing it right now, aren’t we? We are all traveling into the future one second at a time.

Hunting for rare isotopes: The mysterious radioactive atomic nuclei that will be in tomorrow’s technology

Hunting for rare isotopes: The mysterious radioactive atomic nuclei that will be in tomorrow’s technology

When you hear the term “radioactive” you likely think “bad news,” maybe along the lines of fallout from an atomic bomb. But radioactive materials are actually used in a wide range of beneficial applications. In medicine, they routinely help diagnose and treat disease. Irradiation helps keep a number of foods free from insects and invasive pests. Archaeologists use them to figure out how old an artifact might be. And the list goes on.

The Large Hadron Collider has been Shut Down, and Will Stay Down for Two Years While they Perform Major Upgrades

The Large Hadron Collider (LHC) is getting a big boost to its performance. Unfortunately, for fans of ground-breaking physics, the whole thing has to be shut down for two years while the work is done. But once it’s back up and running, its enhanced capabilities will make it even more powerful.

A New Atomic Clock has been Built that Would be off by Less than a Second Since the Big Bang

A New Atomic Clock has been Built that Would be off by Less than a Second Since the Big Bang

Physicists have developed an atomic clock so accurate that it would be off by less than a single second in 14 billion years. That kind of accuracy and precision makes it more than just a timepiece. It’s a powerful scientific instrument that could measure gravitational waves, take the measure of the Earth’s gravitational shape, and maybe even detect dark matter. How did they do it?

Chinese Fusion Experiment Reaches 100 Million Degrees

Chinese Fusion Experiment Reaches 100 Million Degrees

Fusion power has been the fevered dream of scientists, environmentalists and futurists for almost a century. For the past few decades, scientists have been attempting to find a way to create sustainable fusion reactions that would provide human beings with clean, abundant energy, which would finally break our dependence on fossil fuels and other unclean methods.

Experiments with optical tweezers race to test the laws of quantum mechanics

 Experiments with optical tweezers race to test the laws of quantum mechanics

One might think that the optical tweezer – a focused laser beam that can trap small particles – is old hat by now. After all, the tweezer was invented by Arthur Ashkin in 1970. And he received the Nobel Prize for it this year - presumably after its main implications had been realized during the last half-century.

Mystery particle spotted? Discovery would require physics so weird that nobody has even thought of it

There was a huge amount of excitement when the Higgs boson was first spotted back in 2012 – a discovery that bagged the Nobel Prize for Physics in 2013. The particle completed the so-called standard model, our current best theory of understanding nature at the level of particles.