supernova

A Supernova 2.6 Million Years Ago Could Have Wiped Out the Ocean’s Large Animals

A Supernova 2.6 Million Years Ago Could Have Wiped Out the Ocean’s Large Animals

For many years, scientists have been studying how supernovae could affect life on Earth. Supernovae are extremely powerful events, and depending on how close they are to Earth, they could have consequences ranging from the cataclysmic to the inconsequential. But now, the scientists behind a new paper say they have specific evidence linking one or more supernova to an extinction event 2.6 million years ago.

For the first time, astronomers have found a star that survived its companion exploding as supernova

For the first time, astronomers have found a star that survived its companion exploding as supernova

A Type II supernova is a truly amazing astronomical event. As with all supernovae, a Type II consists of a star experiencing core collapse at the end of its life cycle and exploding, causing it to shed its outer layers. A subclass of this type is known as Type IIb, which are stars that have been stripped of their hydrogen fuel and undergo collapse because they are no longer able to maintain fusion in their core.

Kepler Beyond Planets: Finding Exploding Stars

Kepler Beyond Planets: Finding Exploding Stars

Astronomer Ed Shaya was in his office looking at data from NASA’s Kepler space telescope in 2012 when he noticed something unusual: The light from a galaxy had quickly brightened by 10 percent. The sudden bump in light got Shaya instantly excited, but also nervous. The effect could be explained by the massive explosion of a star -- a supernova! -- or, more troublingly, a computer error.

Gravitational waves will let us see inside stars as supernovae happen

Gravitational waves will let us see inside stars as supernovae happen

On February 11th, 2016, scientists at the Laser Interferometer Gravitational-wave Observatory (LIGO) announced the first detection of gravitational waves. This development, which confirmed a prediction made by Einstein’s Theory of General Relativity a century ago, has opened up new avenues of research for cosmologists and astrophysicists. Since that time, more detections have been made, all of which were said to be the result of black holes merging.

Star Should Have Gone Supernova, But it Imploded Into a Black Hole Instead

Star Should Have Gone Supernova, But it Imploded Into a Black Hole Instead

Collapsing stars are a rare thing to witness. And when astronomers are able to catch a star in the final phase of its evolution, it is a veritable feast for the senses. Ordinarily, this process consists of a star undergoing gravitational collapse after it has exhausted all of its fuel, and shedding its outer layers in a massive explosion (aka. a supernova). However, sometimes, stars can form black holes without the preceding massive explosion.

Hubble's Bright Shining Lizard Star

Hubble's Bright Shining Lizard Star

In space, being outshone is an occupational hazard. This NASA/ESA Hubble Space Telescope image captures a galaxy named NGC 7250. Despite being remarkable in its own right — it has bright bursts of star formation and recorded supernova explosions— it blends into the background somewhat thanks to the gloriously bright star hogging the limelight next to it.

Hubble observes first multiple images of explosive distance indicator

Hubble observes first multiple images of explosive distance indicator

A Swedish-led team of astronomers used the NASA/ESA Hubble Space Telescope to analyse the multiple images of a gravitationally lensed type Ia supernova for the first time. The four images of the exploding star will be used to measure the expansion of the Universe. This can be done without any theoretical assumptions about the cosmological model, giving further clues about how fast the Universe is really expanding. The results are published in the journal Science.

A Star going Supernova in Slow Motion Discovered

A Star going Supernova in Slow Motion Discovered

A supernova is a rare and wondrous event. Since these intense explosions only take place when a massive star reaches the final stage of its evolutionary lifespan – when it has exhausted all of its fuel and undergoes core collapse – or when a white dwarf in a binary star system consumes its companion, being able to witness one is quite the privilege.

The Dawn of a New Era for Supernova 1987a

The Dawn of a New Era for Supernova 1987a

Three decades ago, astronomers spotted one of the brightest exploding stars in more than 400 years. The titanic supernova, called Supernova 1987A (SN 1987A), blazed with the power of 100 million suns for several months following its discovery on Feb. 23, 1987.Since that first sighting, SN 1987A has continued to fascinate astronomers with its spectacular light show. Located in the nearby Large Magellanic Cloud, it is the nearest supernova explosion observed in hundreds of years and the best opportunity yet for astronomers to study the phases before, during, and after the death of a star.

Self-made stars - Astronomers observe black hole producing cold, star-making fuel from hot plasma jets and bubbles

Self-made stars - Astronomers observe black hole producing cold, star-making fuel from hot plasma jets and bubbles

The Phoenix cluster is an enormous accumulation of about 1,000 galaxies, located 5.7 billion light years from Earth. At its center lies a massive galaxy, which appears to be spitting out stars at a rate of about 1,000 per year. Most other galaxies in the universe are far less productive, squeaking out just a few stars each year, and scientists have wondered what has fueled the Phoenix cluster’s extreme stellar output.

Chance discovery of a three hour old supernova

Chance discovery of a three hour old supernova

Supernovae are extremely energetic and dynamic events in the universe. The brightest one we’ve ever observed was discovered in 2015 and was as bright as 570 billion Suns. Their luminosity signifies their significance in the cosmos. They produce the heavy elements that make up people and planets, and their shockwaves trigger the formation of the next generation of stars.

Is our Milky Way galaxy a zombie, already dead and we don’t know it?

Is our Milky Way galaxy a zombie, already dead and we don’t know it?

Like a zombie, the Milky Way galaxy may already be dead but it still keeps going. Our galactic neighbor Andromeda almost certainly expired a few billion years ago, but only recently started showing outward signs of its demise.

Hubble Views a Colorful Demise of a Sun-like Star

Hubble Views a Colorful Demise of a Sun-like Star

This image, taken by the NASA/ESA Hubble Space Telescope, shows the colorful "last hurrah" of a star like our sun. The star is ending its life by casting off its outer layers of gas, which formed a cocoon around the star's remaining core. Ultraviolet light from the dying star makes the material glow. The burned-out star, called a white dwarf, is the white dot in the center. Our sun will eventually burn out and shroud itself with stellar debris, but not for another 5 billion years.

Have we really just seen the birth of a black hole?

Have we really just seen the birth of a black hole?

For almost half a century, scientists have subscribed to the theory that when a star comes to the end of its life-cycle, it will undergo a gravitational collapse. At this point, assuming enough mass is present, this collapse will trigger the formation of a black hole. Knowing when and how a black hole will form has long been something astronomers have sought out.

Hubble Gazes at Long-dead Star

Hubble Gazes at Long-dead Star

This NASA/ESA Hubble Space Telescope image captures the remnants of a long-dead star. These rippling wisps of ionized gas, named DEM L316A, are located some 160,000 light-years away within one of the Milky Way’s closest galactic neighbors — the Large Magellanic Cloud (LMC).