black holes

Can entangled quantum bits be used to probe black holes?

Can entangled quantum bits be used to probe black holes?

Physicists have used a seven-qubit quantum computer to simulate the scrambling of information inside a black hole, heralding a future in which entangled quantum bits might be used to probe the mysterious interiors of these bizarre object

There’s a Ring of Cool Gas Wrapped Around the Milky Way’s Supermassive Black Hole

There’s a Ring of Cool Gas Wrapped Around the Milky Way’s Supermassive Black Hole

There’s a lot going on at the center of our galaxy. A supermassive black hole named Sagittarius A-Star resides there, drawing material in with its inexorable gravitational attraction. In that mind-bending neighborhood, where the laws of physics are stretched beyond comprehension, astronomers have detected a ring of cool gas.

As Expected, the Newly Upgraded LIGO is Finding a Black Hole Merger Every Week

As Expected, the Newly Upgraded LIGO is Finding a Black Hole Merger Every Week

In February of 2016, scientists at the Laser Interferometer Gravitational-wave Observatory (LIGO) announced the first-ever detection of gravitational waves (GWs). Since then, multiple events have been detected, providing insight into a cosmic phenomena that was predicted over a century ago by Einstein’s Theory of General Relativity.

First ever black hole photo confirms Einstein’s theory of relativity

First ever black hole photo confirms Einstein’s theory of relativity

Black holes are long-time superstars of science fiction. But their Hollywood fame is a little strange given that no-one has ever actually seen one – at least, until now. If you needed to see to believe, then thank the Event Horizon Telescope (EHT), which has just produced the first ever direct image of a black hole. This amazing feat required global collaboration to turn the Earth into one giant telescope and image an object thousands of trillions of kilometres away.

A brief history of black holes

A brief history of black holes

Late in 2018, the gravitational wave observatory, LIGO, announced that they had detected the most distant and massive source of ripples of spacetime ever monitored: waves triggered by pairs of black holes colliding in deep space. Only since 2015 have we been able to observe these invisible astronomical bodies, which can be detected only by their gravitational attraction. The history of our hunt for these enigmatic objects traces back to the 18th century, but the crucial phase took place in a suitably dark period of human history – World War II.

How we discovered that supermassive black holes can power enormous ‘galactic fountains’

How we discovered that supermassive black holes can power enormous ‘galactic fountains’

A fountain in a garden pond could shoot a plume of water to roughly three metres in height. By comparison, the famous fountain on Lake Geneva launches a plume of water up to 140m into the air. Now imagine a fountain launched from the centre of a galaxy, with a supermassive black hole acting as the pump. How far do you think this plume would extend? The answer is over 100,000 light years.

First Successful Test of Einstein’s General Relativity Near Supermassive Black Hole

First Successful Test of Einstein’s General Relativity Near Supermassive Black Hole

Observations made with ESO’s Very Large Telescope have for the first time revealed the effects predicted by Einstein’s general relativity on the motion of a star passing through the extreme gravitational field near the supermassive black hole in the centre of the Milky Way. This long-sought result represents the climax of a 26-year-long observation campaign using ESO’s telescopes in Chile.

Red Nuggets’ Are Galactic Gold for Astronomers

Red Nuggets’ Are Galactic Gold for Astronomers

About a decade ago, astronomers discovered a population of small, but massive galaxies called “red nuggets.” A new study using NASA’s Chandra X-ray Observatory indicates that black holes have squelched star formation in these galaxies and may have used some of the untapped stellar fuel to grow to unusually massive proportions.

Astronomers may have just discovered a dozen black holes in the center of our galaxy

Astronomers may have just discovered a dozen black holes in the center of our galaxy

Astronomers first noticed an enigmatic object, dubbed “Sagittarius A*”, at the very heart of our Milky Way galaxy in the 1960s – the earliest days of radio and infrared astronomy. But just how extraordinary this source was only became clear three decades later, when it was identified as a supermassive black hole with the mass of whopping four million suns.

Outflows from black holes are creating new molecules where there should only be destruction

Outflows from black holes are creating new molecules where there should only be destruction

During the 1960s, scientists discovered a massive radio source (known as Sagittarius A*) at the center of the Milky Way, which was later revealed to be a Supermassive Black Holes (SMBH). Since then, they have learned that these SMBHs reside at the center of most massive galaxies. The presence of these black holes is also what allows the centers of these galaxies to have a higher than normal luminosity – aka. Active Galactic Nuclei (AGNs).

A black hole is pushing the stars around in the Globular Cluster

A black hole is pushing the stars around in the Globular Cluster

Astronomers have been fascinated with globular clusters ever since they were first observed in 17th century. These spherical collections of stars are among the oldest known stellar systems in the Universe, dating back to the early Universe when galaxies were just beginning to grow and evolve. Such clusters orbit the centers of most galaxies, with over 150 known to belong to the Milky Way alone.

Supermassive black holes can turn star formation on and off in a large galaxy

Supermassive black holes can turn star formation on and off in a large galaxy

In the 1970s, astronomers discovered that a particularly large black hole (Sagittarius A*) existed at the center of our galaxy. In time, they came to understand that similar Supermassive Black Holes (SMBHs) existed in the center of most massive galaxies. The presence of these black holes was also what differentiated galaxies that had particularly luminous cores – aka. Active Galactic Nuclei (AGN) – from those that didn’t.

Rare glimpse of a black hole’s magnetic field could help us to understand how it feeds

Rare glimpse of a black hole’s magnetic field could help us to understand how it feeds

Encountering a black hole would be a frightening prospect for our planet. We know that these cosmic monsters ferociously devour any object that strays too close to their “event horizon” – the last chance of escape. But even though black holes drive some of the most energetic phenomena in the universe, the physics of their behaviour, including how they feed, remains hotly debated.