magnetic fields

Rare glimpse of a black hole’s magnetic field could help us to understand how it feeds

Rare glimpse of a black hole’s magnetic field could help us to understand how it feeds

Encountering a black hole would be a frightening prospect for our planet. We know that these cosmic monsters ferociously devour any object that strays too close to their “event horizon” – the last chance of escape. But even though black holes drive some of the most energetic phenomena in the universe, the physics of their behaviour, including how they feed, remains hotly debated.

Exploring the universe for magnetic fields

Exploring the universe for magnetic fields

In the past few decades, astronomers and geophysicists have benefited immensely from the study of planetary magnetic fields. Dedicated to mapping patterns of magnetism on other astronomical bodies, this field has grown thanks to missions ranging from the Voyager probes to the more recent Mars Atmosphere and Volatile EvolutioN (MAVEN) mission.

Astronomers Find the First 'Wind Nebula' Around a Magnetar

Astronomers Find the First 'Wind Nebula' Around a Magnetar

Astronomers have discovered a vast cloud of high-energy particles called a wind nebula around a rare ultra-magnetic neutron star, or magnetar, for the first time. The find offers a unique window into the properties, environment and outburst history of magnetars, which are the strongest magnets in the universe.

Why lightsabers would be far more lethal than George Lucas envisioned

Why lightsabers would be far more lethal than George Lucas envisioned

Research is an unpredictable process. Sometimes you end up making a really cool discovery that you didn’t see coming. I recently uncovered a fundamental property of lightsabers (that’s right – the awesome weapons from Star Wars) while doing my regular plasma physics research. I found that, while it is in theory possible to build a lightsaber, it’s likely it would be the most dangerous weapon ever created – both for the perpetrator and the victim.

Young Sun-Like Star Shows a Magnetic Field Was Critical for Life on the Early Earth

Young Sun-Like Star Shows a Magnetic Field Was Critical for Life on the Early Earth

Nearly four billion years ago, life arose on Earth. Life appeared because our planet had a rocky surface, liquid water, and a blanketing atmosphere. But life thrived thanks to another necessary ingredient: the presence of a protective magnetic field. A new study of the young, Sun-like star Kappa Ceti shows that a magnetic field plays a key role in making a planet conducive to life.