magnetic field

Magnetic Fields May Be the Key to Black Hole Activity

Magnetic Fields May Be the Key to Black Hole Activity

Parallel jets provide astronomers with some of the most powerful evidence that a supermassive black hole lurks in the heart of most galaxies. Some of these black holes appear to be active, gobbling up material from their surroundings and launching jets at ultra-high speeds, while others are quiescent, even dormant.

This Super Powerful Magnetic Field Puts Us One Step Closer to Nuclear Fusion

This Super Powerful Magnetic Field Puts Us One Step Closer to Nuclear Fusion

Inexpensive clean energy sounds like a pipe dream. Scientists have long thought that nuclear fusion, the type of reaction that powers stars like the Sun, could be one way to make it happen, but the reaction has been too difficult to maintain. Now, we’re closer than ever before to making it happen — physicists from the University of Tokyo (UTokyo) say they’ve produced the strongest-ever controllable magnetic field.

Did you know the earth has a second magnetic field? Its oceans

Did you know the earth has a second magnetic field? Its oceans

Earth’s magnetic field is one of the most mysterious features of our planet. It is also essential to life as we know it, ensuring that our atmosphere is not stripped away by solar wind and shielding life on Earth from harmful radiation. For some time, scientists have theorized that it is the result of a dynamo action in our core, where the liquid outer core revolves around the solid inner core and in the opposite direction of the Earth’s rotation.

NASA’s SDO Reveals How Magnetic Cage on the Sun Stopped Solar Eruption

NASA’s SDO Reveals How Magnetic Cage on the Sun Stopped Solar Eruption

A dramatic magnetic power struggle at the Sun’s surface lies at the heart of solar eruptions, new research using NASA data shows. The work highlights the role of the Sun’s magnetic landscape, or topology, in the development of solar eruptions that can trigger space weather events around Earth.

Chaotically Magnetized Cloud Is No Place to Build a Star, or Is It?

Chaotically Magnetized Cloud Is No Place to Build a Star, or Is It?

For decades, scientists believed that the magnetic field lines coursing around newly forming stars were both powerful and unyielding, working like jail bars to corral star-forming material. More recently, astronomers have found tantalizing evidence that large-scale turbulence far from a nascent star can drag magnetic fields around at will.

Does an anomaly in the Earth’s magnetic field portend a coming pole reversal?

Does an anomaly in the Earth’s magnetic field portend a coming pole reversal?

The Earth is blanketed by a magnetic field. It’s what makes compasses point north, and protects our atmosphere from continual bombardment from space by charged particles such as protons. Without a magnetic field, our atmosphere would slowly be stripped away by harmful radiation, and life would almost certainly not exist as it does today.

What Is A Magnetic Field?

What Is A Magnetic Field?

Everyone knows just how fun magnets can be. As a child, who among us didn’t love to see if we could make our silverware stick together? And how about those little magnetic rocks that we could arrange to form just about any shape because they stuck together? Well, magnetism is not just an endless source of fun or good for scientific experiments; it’s also one of basic physical laws upon which the universe is based.

NASA’s IBEX Observations Pin Down Interstellar Magnetic Field

NASA’s IBEX Observations Pin Down Interstellar Magnetic Field

Immediately after its 2008 launch, NASA’s Interstellar Boundary Explorer, or IBEX, spotted a curiosity in a thin slice of space: More particles streamed in through a long, skinny swath in the sky than anywhere else. The origin of the so-called IBEX ribbon was unknown – but its very existence opened doors to observing what lies outside our solar system, the way drops of rain on a window tell you more about the weather outside.

Damaging electric currents in space affect Earth’s equatorial region, not just the poles

Damaging electric currents in space affect Earth’s equatorial region, not just the poles

The Earth’s magnetic field – known as the “magnetosphere” – protects our atmosphere from the “solar wind.” That’s the constant stream of charged particles flowing outward from the sun. When the magnetosphere shields Earth from these solar particles, they get funneled toward the polar regions of our atmosphere.