solar storms

Mission to the sun will protect us from devastating solar storms and help us travel deeper into space

Mission to the sun will protect us from devastating solar storms and help us travel deeper into space

From prayer and sacrifice to sunbathing, humans have worshipped the sun since time immemorial. And it’s no wonder. At around 150m km away, it is close enough to provide the light, heat and energy to sustain the entire human race. But despite the fact that our parent star has been studied extensively with modern telescopes – both from home and in space – there’s a lot we don’t know about it.

Space Weather Model Simulates Solar Storms From Nowhere

Space Weather Model Simulates Solar Storms From Nowhere

Our ever-changing sun continuously shoots solar material into space. The grandest such events are massive clouds that erupt from the sun, called coronal mass ejections, or CMEs. These solar storms often come first with some kind of warning — the bright flash of a flare, a burst of heat or a flurry of solar energetic particles. But another kind of storm has puzzled scientists for its lack of typical warning signs: They seem to come from nowhere, and scientists call them stealth CMEs.

Solar Storms Can Drain Electrical Charge Above Earth

Solar Storms Can Drain Electrical Charge Above Earth

New research on solar storms finds that they not only can cause regions of excessive electrical charge in the upper atmosphere above Earth's poles, they also can do the exact opposite: cause regions that are nearly depleted of electrically charged particles. The finding adds to our knowledge of how solar storms affect Earth and could possibly lead to improved radio communication and navigation systems for the Arctic.

New Space Weather Model Helps Simulate Magnetic Structure of Solar Storms

New Space Weather Model Helps Simulate Magnetic Structure of Solar Storms

The dynamic space environment that surrounds Earth – the space our astronauts and spacecraft travel through – can be rattled by huge solar eruptions from the sun, which spew giant clouds of magnetic energy and plasma, a hot gas of electrically charged particles, out into space. The magnetic field of these solar eruptions are difficult to predict and can interact with Earth’s magnetic fields, causing space weather effects.

NASA Study Finds Solar Storms Could Spark Soils at Moon's Poles

NASA Study Finds Solar Storms Could Spark Soils at Moon's Poles

Powerful solar storms can charge up the soil in frigid, permanently shadowed regions near the lunar poles, and may possibly produce "sparks" that could vaporize and melt the soil, perhaps as much as meteoroid impacts, according to NASA-funded research. This alteration may become evident when analyzing future samples from these regions that could hold the key to understanding the history of the moon and solar system.

Solar storms could solve longstanding paradox of how life on Earth arose

Solar storms could solve longstanding paradox of how life on Earth arose

It was only a matter of 700m years or so after Earth formed and its surface cooled and solidified that life began to flourish on Earth. All studies suggest that life requires water – and we know from rocks on Earth that the climate in this distant past was sufficiently warm for liquid water to be present. But therein lies a mystery.

Solar Storms Ignite X-ray "Northern Lights" on Jupiter

Solar Storms Ignite X-ray "Northern Lights" on Jupiter

Solar storms are triggering X-ray auroras on Jupiter that are about eight times brighter than normal over a large area of the planet and hundreds of times more energetic than Earth’s "northern lights," according to a new study using data from NASA’s Chandra X-ray Observatory. This result is the first time that Jupiter's auroras have been studied in X-ray light when a giant solar storm arrived at the planet.