Space & Exploration

Turns Out There Is No Actual Looking Up

Direction is something we humans are pretty accustomed to. Living in our friendly terrestrial environment, we are used to seeing things in term of up and down, left and right, forwards or backwards. And to us, our frame of reference is fixed and doesn’t change, unless we move or are in the process of moving. But when it comes to cosmology, things get a little more complicated.

The origin of Phobos' groovy mystery

The origin of Phobos' groovy mystery

Mars’ natural satellites – Phobos and Deimos – have been a mystery since they were first discovered. While it is widely believed that they are former asteroids that were captured by Mars’ gravity, this remains unproven. And while some of Phobos’ surface features are known to be the result of Mars’ gravity, the origin of its linear grooves and crater chains (catenae) have remained unknown.

Dark matter: hot or not

Dark matter: hot or not

For almost a century, astronomers and cosmologists have postulated that space is filled with an invisible mass known as “dark matter”. Accounting for 27% of the mass and energy in the observable universe, the existence of this matter was intended to explain all the “missing” baryonic matter in cosmological models. Unfortunately, the concept of dark matter has solved one cosmological problem, only to create another.

How could we colonize Mercury?

How could we colonize Mercury?

Humanity has long dreamed of establishing itself on other worlds, even before we started going into space. We’ve talked about colonizing the Moon, Mars, and even establishing ourselves on exoplanets in distant star systems. But what about the other planets in our own backyard? When it comes to the Solar System, there is a lot of potential real estate out there that we don’t really consider.

How many moons does our solar system have?

For millennia, human beings stared up at the night sky and were held in awe by the Moon. To many ancient cultures, it represented a deity, and its cycles were accorded divine significance. By the time of Classical Antiquity and the Middle Ages, the Moon was considered to be a heavenly body that orbited Earth, much like the other known planets of the day (Mercury, Venus, Mars, Jupiter, and Saturn).

How long does it take to get the asteroid belt?

How long does it take to get the asteroid belt?

Between the orbits of Mars and Jupiter lies the Solar System’s Main Asteroid Belt. Consisting of millions of objects that range in size from hundreds of kilometers in diameter (like Ceres and Vesta) to one kilometer or more, the Asteroid Belt has long been a source of fascination for astronomers. Initially, they wondered why the many objects that make it up did not come together to form a planet. But more recently, human beings have been eyeing the Asteroid Belt for other purposes.

If we ever came across aliens, would we be able to understand them?

If we ever came across aliens, would we be able to understand them?

Many scientists believe that alien civilisations exist. For them, the question is now whether we will encounter them in the near future or a very long time from now, rather than if at all. So let’s imagine that we suddenly stand face-to-face with members of an alien species. What would we do first? Surely communicating that we come in peace would be a priority. But would we ever be able to understand each other?

Beyond Neptune, A chunk of ice is orbiting the sun in the wrong direction

Beyond Neptune, A chunk of ice is orbiting the sun in the wrong direction

Beyond the orbit of Neptune, the farthest recognized-planet from our Sun, lies the mysteries population known as the Trans-Neptunian Object (TNOs). For years, astronomers have been discovering bodies and minor planets in this region which are influenced by Neptune’s gravity, and orbit our Sun at an average distance of 30 Astronomical Units.

Space submarines will allow us to explore the seas of icy moons

Space submarines will allow us to explore the seas of icy moons

One of the most profound and exciting breakthroughs in planetary science in the last two decades has been the discovery of liquid methane lakes on the surface of Saturn’s largest moon Titan, and liquid oceans under the icy surfaces of many of the giant gas planets' other moons. Thrillingly, these some of these “waters” may actually harbour life.

The power of Jupiter’s Great Red Spot: enormous storm may be heating the atmosphere

The power of Jupiter’s Great Red Spot: enormous storm may be heating the atmosphere

There is an “energy crisis” on Jupiter. At 800K (527ºC), its upper atmosphere is 600 degrees hotter than expected – a phenomenon also seen on the other giant planets in our solar system. And to make the matter even more perplexing, researchers have now discovered that the region of the atmosphere above Jupiter’s Great Red Spot, a giant storm system, is hundreds of degrees hotter than anywhere else on the planet.

Explainer: what is the Great Attractor and its pull on our galaxy?

Around four decades ago, astronomers became aware that our galaxy, the Milky Way, was moving through space at a much faster rate than expected. At 2.2-million kilometres an hour, the speed of the Milky Way through the Cosmos is 2,500 times faster than a cruising airliner; 55 times more than the escape velocity from Earth; and a factor of two greater than even the galaxy’s own escape velocity! But where this motion comes from is a mystery.

Asteroids most likely delivered water to the moon – here’s how we cracked it

Asteroids most likely delivered water to the moon – here’s how we cracked it

One of the moon’s greatest mysteries has long been whether it has any water. During the Apollo era in 1960s and 70s, scientists were convinced it was dry and dusty – estimating there was less than one part in a billion water. However, over the last decade, analyses of lunar samples have revealed that there is a considerable amount of water inside the moon – up to several hundred parts per million – and that it’s been there since the satellite was very young.

Solar storms could solve longstanding paradox of how life on Earth arose

Solar storms could solve longstanding paradox of how life on Earth arose

It was only a matter of 700m years or so after Earth formed and its surface cooled and solidified that life began to flourish on Earth. All studies suggest that life requires water – and we know from rocks on Earth that the climate in this distant past was sufficiently warm for liquid water to be present. But therein lies a mystery.