Some truly interesting and ambitious missions have been proposed by NASA and other space agencies for the coming decades. Of these, perhaps the most ambitious include missions to explore the “Ocean Worlds” of the Solar System. Within these bodies, which include Jupiter’s moon Europa and Saturn’s moon Enceladus, scientists have theorized that life could exist in warm-water interior oceans.
Where is the line between a massive planet and a brown dwarf star?
When is a Brown Dwarf star not a star at all, but only a mere Gas Giant? And when is a Gas Giant not a planet, but a celestial object more akin to a Brown Dwarf? These questions have bugged astronomers for years, and they go to the heart of a new definition for the large celestial bodies that populate solar systems.
Astronauts may one day turn poo into food
America's First Satellite Established 'Foothold in Space'
This is the surface of a giant star, 350 times larger than the sun
When it comes to looking beyond our Solar System, astronomers are often forced to theorize about what they don’t know based on what they do. In short, they have to rely on what we have learned studying the Sun and the planets from our own Solar System in order to make educated guesses about how other star systems and their respective bodies formed and evolved.
Planets don't get bigger than this!
How comet dust has allowed us to trace the history of the Solar System
Want faster data and a cleaner planet? Start mining asteroids
Mining asteroids might seem like the stuff of science fiction, but there are companies and a few governments already working hard to make it real. This should not be surprising: compared with the breathtaking bridges that engineers build on Earth, asteroid-mining is a simple, small-scale operation requiring only modest technological advances. If anything is lacking, it is the imagination to see how plausible it has become. I am afraid only that it might not arrive soon enough to address the urgent resource challenges that the world is facing right now.
A black hole is pushing the stars around in the Globular Cluster
Astronomers have been fascinated with globular clusters ever since they were first observed in 17th century. These spherical collections of stars are among the oldest known stellar systems in the Universe, dating back to the early Universe when galaxies were just beginning to grow and evolve. Such clusters orbit the centers of most galaxies, with over 150 known to belong to the Milky Way alone.
A huge asteroid wiped out the dinosaurs, but what danger do smaller ones pose?
You too can be an astrophysicist with your new telescope
Supermassive black holes can turn star formation on and off in a large galaxy
In the 1970s, astronomers discovered that a particularly large black hole (Sagittarius A*) existed at the center of our galaxy. In time, they came to understand that similar Supermassive Black Holes (SMBHs) existed in the center of most massive galaxies. The presence of these black holes was also what differentiated galaxies that had particularly luminous cores – aka. Active Galactic Nuclei (AGN) – from those that didn’t.
High Above Jupiter’s Clouds
Maybe Mars and Earth didn't form close to each other
In recent years, astronomers have been looking to refine our understanding of how the Solar System formed. On the one hand, you have the traditional Nebular Hypothesis which argues that the Sun, the planets, and all other objects in the Solar System formed from nebulous material billions of years ago. However, astronomers traditionally assumed that the planets formed in their current orbits, which has since come to be questioned.
How long can a rocky world withstand the blast from a red dwarf star
Red dwarf stars have become a major focal point for exoplanet studies lately, and for good reason. For starters, M-type (red dwarf) stars are the most common type in our Universe, accounting for 75% of stars in the Milky Way alone. In addition, in the past decade, numerous terrestrial (i.e rocky) exoplanets have been discovered orbiting red dwarf stars, and within their circumstellar habitable zones (“Goldilocks Zones”) to boot.
Flying chariots and exotic birds: how 17th century dreamers planned to reach the moon
The Genesis Project: using robotic gene factories to seed the galaxy with life
In the past decade, the rate at which extra-solar planets have been discovered and characterized has increased prodigiously. Because of this, the question of when we might explore these distant planets directly has repeatedly come up. In addition, the age-old question of what we might find once we get there – i.e. is humanity alone in the Universe or not? – has also come up with renewed vigor.
You don’t need to build a rocket to prove the Earth isn’t flat – here’s the simple science
Galactic panspermia: Interstellar dust could transport life from star to star
The theory of Panspermia states that life exists through the cosmos, and is distributed between planets, stars and even galaxies by asteroids, comets, meteors and planetoids. In this respect, life began on Earth about 4 billion years ago after microorganisms hitching a ride on space rocks landed on the surface. Over the years, considerable research has been devoted towards demonstrating that the various aspects of this theory work.
The internal ocean of Saturn’s moon Enceladus could be old enough to have evolved life, finds study
We recently bade farewell to the Cassini spacecraft, which after 13 years of faithfully orbiting Saturn and its moons was directed to plunge into the giant planet’s atmosphere. The reason for the “grand finale” was to guard against the possibility that Cassini might crash into one of Saturn’s moons – in particular Enceladus.