Early Earth Was Almost Entirely Underwater, With Just a Few Islands

By Evan Gough

It might seem unlikely, but tiny grains of minerals can help tell the story of early Earth. And researchers studying those grains say that 4.4 billion years ago, Earth was a barren, mountainless place, and almost everything was under water. Only a handful of islands poked above the surface.

Scientists at the Australian National University are behind this study, led by researcher Dr. Antony Burnham. The mineral grains in the study are the oldest rocks ever found. They’re 4.4 billion year old zircon mineral grains from the Jack Hills of Western Australia, where they were preserved in sandstone formations.

Earth's Hadean Eon is a bit of a mystery to us, because geologic evidence from that time is scarce. Researchers at the Australian National University have used tiny zircon grains to get a better picture of early Earth. - Image Credit: NASA

4.4 billion years ago, the Earth was in what is called the ‘Hadean Eon’. This time period is poorly understood, because there is no rock record dating from that time. This is where the zircon mineral grains come in.

“The history of the Earth is like a book with its first chapter ripped out with no surviving rocks from the very early period, but we’ve used these trace elements of zircon to build a profile of the world at that time.” – Lead Researcher Dr. Antony Burnham, Australian National University

In a sense, these zircon grains are the missing pages.

Zircon’s chemical name is zirconium silicate, and it’s found almost everywhere in the Earth’s crust. This study focuses on what’s called detrital zircon, which is formed in igneous rocks, but then survives over time until deposited in sedimentary rocks. Zircon grains are typically very small, about 0.1 to 0.3 mm in size.

Zircon commonly contains traces of thorium and uranium, which means they can be easily dated by modern dating methods. Zircon can survive a lot of geologic processes like metamorphism, which explains their usefulness in studying the early Earth. They’re not easily destroyed, and they have a story to tell us.

The zircon grains were crystallized in magma about 500 million years after the Earth formed. As a result, they offer rare insights into conditions on Earth at the time. The zircon grains in question are referred to as detritus, because they formed in magma but were deposited in the geologically-important sandstone at Jack Hills, Australia. The detritus grains were compared to a second type of zircon grain which were formed directly in the sedimentary formations.

By distinguishing between the two types, researchers gain a new geochemical tool to understand early Earth.

The Jack Hills in Western Australia contain the oldest rocks known to exist on Earth. A team studying them concludes that early Earth was mostly a water world. - Image Credit: NASA Earth Observatory

“We used the granites of southeast Australia to decipher the link between zircon composition and magma type, and built a picture of what those missing rocks were,” he said.

“Our research indicates there were no mountains and continental collisions during Earth’s first 700 million years or more of existence – it was a much more quiet and dull place,” says Dr. Burnham from the ANU Research School of Earth Sciences.

“Our findings also showed that there are strong similarities with zircon from the types of rocks that predominated for the following 1.5 billion years, suggesting that it took the Earth a long time to evolve into the planet that we know today.” The team’s results are published in the journal Nature Geoscience, and is titled “Formation of Hadean granites by melting of igneous crust.”

he detrital zircons formed elsewhere, but were deposited in the Jack Hills formation. - Image Credit: Robert Simmon, NASA

This is not the first time that ancient, detrital zircons have been at the center of scientific studies of early Earth. In a previous study, they were used to conclude that Earth had a significant hydrosphere 4.3 billion years ago.

Source: Universe Today